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Questions from NHGRI and planners

What is the current status of mapping functional
elements in human and mouse?

What high throughput, genome-wide, unbiased data
production efforts are of highest priority?

What data validation and characterization efforts
should be undertaken?

What future studies should be envisaged if not limited
by technology?

What technological breakthroughs would be
transformative?

How would you prioritize needs?

What is needed for making new data interoperable
with previous ENCODE findings?




The current state of mapping function-associated features
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Brute force approach to completion

Num
Num
Num
Num

Num

oer of cell types m =2000 (COPE database)
oer of features  n=2000 (ca 1500 TFs...)
oer of conditions 0=20 (guess)

oer of time points p =10 (guess)

oer of whole genome assays to fill an m*n*o*p

matrix = 800 million




Focused efforts of multiple labs on one system
gets closer to completeness
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Genome-wide datasets that are needed (1)

* 3D chromatin interaction maps
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— Range of scales (10 to 1000 kb)
— Many cell types

* Dynamics of interaction maps
— Across a differentiation series
— Response to environmental stimuli

* Coordinate with and complement the 4D Nucleome project
* Top-down managed approach
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Genome-wide datasets that are needed (2)

More TFs and other features mapped in a greater
number of cell types

Current limitations:
— ChIP/RIP-grade antibodies
— Number of cells (10 to 20 million cells)

Higher resolution (ChIP-exo; DNase footprints)
Leverage DNase footprints to infer bound TF classes
Top-down managed approach (?), Community driven

(?)




Dynamics

Follow epigenetic marks and transcriptional response

across a time series in response to a stimulus —or as a

normal differentiation series
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Validation and characterization of candidate
functional elements (1)

Some managed, closely coordinated efforts

Use high throughput genetic screens/assays measuring
activity of predicted functional modules and elements, e.g.
regulatory modules

Insure that a certain fraction of functional predictions from
the Encyclopedia are tested

Tested sets should include positive predictions.
— Results will provide an empirical validation rate

— Results could give insights into more precise insights into roles of the
DNA segments (e.g. activity in unexpected tissue)

Tested sets should also include negative predictions
— DNA segments NOT predicted to be functional modules and elements
— Give us an idea of the frequency we are missing things

Only for the cell type-condition-organisms assayed.




Validation and characterization of candidate
functional elements (2)

Other less tightly managed approaches
Multiple kinds of perturbation
Gain-of-function reporter assays

Large-scale genetic engineering for loss-of-function
and replacement mutations in the endogenous locus
are critically needed.

What aspects of this kind of work fits in the NHGRI
portfolio, and what aspects belong to other
Institutes?




Expand the vocabulary
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Wide range of quantitative enhancer effects suggests heterogeneity, not
binary classification

Active enhancers can have diverse combinations of TFs and histone
modifications

Unsupervised learning of chromatin states suggest far more than the common
2-4 states (promoter, enhancer silencer, msulator)
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Encourage a wide variety of assays

* There should be periodic calls for proposals so
that labs that develop a clever new assay (e.g.
revealing bona fide chromatin boundaries) can
be supported for genome-wide analyses




Power in interpretation of comparisons

Comparative genomics

Window Position Human Feb. 2009 (GRCh37/hg19) chr1:181,122,256-181,122,304 (49 bp)
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Signatures of

- purifying selection
- adaptive evolution
- lineage specificity

Motifs for GATA factor binding preserved across mammals

Comparative epigenomics

-
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4 categories of functional evolution revealed by
comparative epigenomics

d . . Function active in Not present
In 2"9 species: Function conserved . . Sequence conserved . -
different tissue (Lineage specific)
Tissue 2

b o - s
il . il .

FunctCons FunctActive SeqCons LineageSpec

The Mouse ENCODE Consortium (2014) Nature

Denas, Sandstrom, Cheng, Beal, Herrero, Hardison, Taylor (2015) BMC Genomics; bioRxiv
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What future studies could be envisaged if not
limited by technology?

 What are the structures and
mechanisms for directed
movement of genes in the
nucleus?

* During activation, genes
move from nuclear periphery
to a zone with abundant RNA
POL2

— Transcription factories?

e Actively transcribed genes
co-localize

Schoenfelder et al. (2010) Nature Genetics
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Directed movement

How does a gene get to a
(functionally relevant) position in
the nucleus and what directed it?

Are there molecular locomotives
to pull genes along?

— |s that what one type of enhancer
does?

Are there tracks that the gene
follows?
— Does that account for some of the
unexplained TF binding?
What determines how long a gene
stays in the active zone
(trancription factory?)

— |s that what another type of
enhancer does?
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Other functional elements | know | don’t know

* Replication machinery and templates

e Mitotic bookmarks

— We can map locations that stay open and
bound during mitosis | [] Well-preserved in mitosis Partially or fully diminished in mitosis

Hsiung et al (2014) Gen Res

— What distinguishes them from other sites at
which TFs dissociate during mitosis?

— Do these sites have special roles in
(re)establishing transcriptional profiles?

 Recombination hotspots

17

 Matrix attachment regions



Transformative technological breakthroughs (1)

In all cases, new methods must be robust and accurate

Mapping binding profiles for a very large number of TFs
— Tagging TF genes by genome editing (CRISPR)

Mapping epigenetic features on small numbers (100’s to

1000’s) of cells

Transcriptomes and epigenetic profiles

in single cells

— Heterogeneity and stochastic events in
single cells may reveal a radically different
picture of differentiation than inferred
from studies of cell populations
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Transformative breakthrough (2): Visualization for
Interpretation

Browsers are excellent means for studying multiple
data tracks in a given locus

— Limited to single loci
— Limited to screen size, visual acuity —and human memory!

Human brain can discern patterns in complex data

Can a virtual reality viewing environment be built
that would enhance integration and understanding?

User would “fly” through a landscape representing
the data (raw data, correlations, etc)




Prioritize needs

* Disease relevance is always a top priority.

* |[n the long run, you get a strong return on
investment when the research discovers new
biological insights and principles.

* Projects that dig into some newly fertile
ground on enduring questions, usually in
developmental biology.




What is required to make the new findings (data,
computational analysis) interoperable with previous
ENCODE findings? Data coordination

Perhaps the most important point | can make is that any new
initiative arising from these discussions has to insure

— (a) rapid data release

— (b) expert curation

— (c) uniform data processing

— (d) easy access to everyone

— ltems b, ¢, and d are the DCC.

Don’t think about doing anything without it.

Continuing with previous systems is not a critical concern

Always adopt the best methods — even if you have to drop earlier
ones



Community-driven projects

Individual labs or groups of labs with special
expertise for manipulating a system and
interpreting results from genome-wide studies

All assays are still genome-wide

Labs contribute to and adhere to data
standards

All data are still released promptly, deposited
in the Data Coordination Center




Two structures for consortium projects

Managed, coordinated, focus Less coordinated, systems chosen by
on same cell types investigators (and reviewers)
Data production centers Data production centers

0 2
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How do you know when information is complete?

More TFs and other features will be assayed in more tissues, cell types,
developmental stages and pathological states

But how do we know when we know enough?

Use predictive modeling of all epigenetic and other features to predict a
(patho)physiological outcome

See how close current knowledge leads to “understanding” = predictive
accuracy

A. Prototype Network B. Regulatory rules recovered from querying network
Get more information and @ @ = = —
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